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The sequential description of an experiment on the homogeneous deformation of a plane 
specimen is examined. Generalization to the inhomogeneous state results in a closed system 
of equations connecting the rate of stress and strain change. Problems on the deformation 
of an elliptical domain with velocities given on the boundary are solved as tests. The ma- 
terial parameters are determined from experiments formulated on the biaxial tension of rub- 
ber. The correctness of the proposed model and the possibility of solving problems on large 
deformations and rotations are shown. 

i. We try to construct finite deformation equations by starting just from a physical 
experiment and the sequential description of its results. We limit ourselves to the plane 
case. We take a square specimen of homogeneous material of dimension s • ~0 (such as a 
rubber sheet). We apply identical uniformly distributed forces in pairs to opposite sides. 
The specimen consequently changes its size and takes the shape of a parallelogram. We mea- 
sure the new values of the side lengths ~i, s the angle between them (~/2 - ~), and the 
acting forces in the experiment. For definiteness we represent the latter in the form of 
two components directed along the normal and along the sides (Fig. i). Therefore, the di- 
rectly measurable experimental data permit determination of four functions 

P~j = f ~ ( l  1, l~, 5, lo), ( i . i )  
i, ] =  1 ,2 .  

Because  o f  t h e  h o m o g e n e i t y  o f  t h e  m a t e r i a l  and t h e  u n i f o r m i t y  o f  t h e  l o a d  d i s t r i b u t i o n ,  t h e  
d e p e n d e n c e  on t h e  l a s t  a r g u m e n t  h a s  t h e  fo rm 

P~i = lof i l ( l l / lo ,  IJlo, 5). ( 1 . 2 )  

Here  i t  i s  a l r e a d y  assumed t h a t  t h e  m a t e r i a l  b e h a v i o r  i s  i n d e p e n d e n t  o f  t h e  l o a d i n g  h i s t o r y ,  
t h e  F i j  a r e  f u n c t i o n s  n o t  f u n c t i o n a l s .  

S i n c e  a l l  t h e  f o r c e s ,  and i n i t i a l  and new s p e c i m e n  d i m e n s i o n s  a r e  known f rom t e s t ,  t h e n  
any  c o m b i n a t i o n  o f  t h e  m e a s u r e d  q u a n t i t i e s ,  f o r  i n s t a n c e  

~o = p~/lo. ,  o~ = p ~ / l : ,  0% = P : J h ,  o% = p~/z~ ,  E~ = l~/Io, ( 1 . 3 )  

E 2 = 12/l o. 

Fig. 1 
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can be used during processing the results. The ratio ~i/~0 and the angle 6 can be con- 
sidered loading parameters dependent on the time t. We denote the rate of change with re- 
spect to t by a dot. The quantities s and E=, as also s and ~2, are measured directly 
in experiment (or are given by the test program). Consequently, we also use the ratio ~i/ 
s for the processing: 

:~/l~ = i~/l o. lo/l~ := k~/E~ = ~[ (e~ = In E O. ( 1 . 4 )  

The dependences (1.1)-(1.3) yield 

o~= e - - p ~ o : + \ 0 - ~ 7 - o ~  4 +  e~ o~ (1.5) 
�9 [ OFsi ) " EsOF~i �9 OFsi k 

L e t  us  i n t r o d u c e  a l a b o r a t o r y  C a r t e s i a n  c o o r d i n a t e  s y s t e m  0 x z x  =. We d e n o t e  t h e  v e l o c i t y  
c o m p o n e n t s  o f  s p e c i m e n  p o i n t s  by  v : ,  v= .  B e c a u s e  o f  h o m o g e n e i t y  t h e y  d e p e n d  on t h e  c o o r d i -  
n a t e s  v i = aijx j. It is more convenient to write the coefficients a., in the form of deriva- 
rives vi, j. We imaginarily dissect the specimen by a certain line with normal n and denote 
the vector of the force with which one part of the specimen acts on the other by Pn; s is 
the length of the demarcation line; On: and On= are components of the vector ~n = Pn/s, ~, 
• x2 are, respectively, the slope of the normal n and the sides of the specimen to the 
Ox i axis (see Fig. i). It is evident from equilibrium conditions that the vector ~n is inde- 
pendent of the location of the dissecting line. Its projections are 

cos (q~ - x , ) t  o 
Onl =sin (N= ~l) tffll Sill X., "50~2 cOS gs) @ e~ (-~Z N=j{(~r ~05 ~41 - -  (102 sill ~41)' " sin (~$ - -  Z l ) ~  21 

o~=  cos (~  - z l b  ~ cos  (9- ~2)[oo 

We r e p l a c e  t h e  s u b s c r i p t  n f o r  t h e  n o r m a l  n d i r e c t e d  a l o n g  t h e  Ox i a x i s  by  i .  
oij form a Cauchy stress tensor 

0 i ion: cos • sin • "5 (ax~ "5 as,)cos • COS ~2 - -  ~= s in •215  
%: = s i n  (• - xl) 

0 0 1 [(U22 - -  g:i) COS X: COS ~2 "5 O~= COS • sin ~2 "5 ~2~ Sill~: COS X21 , a:2 ---- sin (x2 -- xl) 

t [ @ :  - x2 + 4 + ogl cos xl %1 ---~ s i n ( z = -  ai) 

t o~215  X= T t  12"-t- %= ---- sin (• --  • [ -  ' /~176 " (~i)sin • sin • "5 o o cos• 1 sin • 

The components 

(1.6) 

The forces Pij and their changes are related by the condition that there is no rotational 
moment�9 These conaitions appear simplest in the terminology of oij: ~ = ~ o~2 = o21. 
From kinetic definitions there follows 

• 

"oaj = vl'lq-vs"2-2 -~ v{'~--%'52 cos 2• -~ v"5+vsJ2 sin 2xj, 

Vs,~ - -  %,2 vs, 2 - -  v~,: sin 2• + v~'5 + vS'~ = 
2 "5 2 2 cos 2• 8 • -- • 

(1.7) 

Let us go over t 9 velocities in (1.6). 
(1.5) and of ~j0 and 6 from (1.7), we obtain 

0"12 

Taking account of the expressions for ~ij 

~r:: + el= (v2,l - -  h a )  = Bl:vl,1 "5 B12v=,= -5 Bla ha + %,1 
2 '~ 

+ 
}=~ -- :,5 (v2,1 -- v:,2) = B=:v~,1 .5 B=2v=,2 "5 B2a 

01,2 U5,1 
2 

0"1l - -  0"25 
2- (122,1 -- Vl,2) = B3IU1 I -{- B32Us,2 "5 Baa va'= + v5'1 

' 2 

0 from 

(1.8) 

where 
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~]1-  E~ 
Ea 

cos • sin • sin z~ cos • q)~2 cos • cos • 
Blh= sill ("2 "-" ~ (1)l~l - -  Sill ("2 - -  " I )  " ~- 8-~ ~,2 : ~I-I) (1)lh2, 

cos • sin x 2 h sin x 1 sin • sin.~os.~ .~_~ + ~ _ _ ~ >  02,~, 
~"~ = sin (.~- .,) ~ = ~) r 

Ba~ = t cos (x~ + x~)/,q)~ t sin (• + • (t2)1g2, k = t,  2, 3, 
2 ~ ,  ~, - q)~) + 2 si, ( . ~ - , . i )  

(I)11 EIOFI1 ( oFll ) t OFll E.2OE 1 COS2~41 @ \-~%0 - -  O?I COS2U2 E 2 a6 sin N 1 13OS N1 -~- 

( I oft1 ) 
+ E---~ a--~ + 2 ~  sin • cos • 

__  ( OFn ) t OF,~ OF~, sinO ~ • + ~ - ' ~  _ oo ~ sina • + Z., of sin • cos • - -  OE t 

Z z '~0~-- + 2r176 sin x., cos • 

E~ OF,.1 ( aFu ) 10F~, 
~31~= Ez OE t s i n 2 •  0E 2 o~ sin 2• 2Jr E2 0----~c~215 

q) l (aFzr  o)  
~ = \ - W 1  - o2z  ~ o s  ~ 

t 0Fll ) 
E2 a6 +2~~  c~215  

_L E2 0F22 cOS2 ( I 0F22 ) 
X l - - E 1  O~',~ •  E~ a6 ~-20~ sin•215 

t OF22 
+ E~ a6 s in•176215 

o �9 : 2 22 �9 2 ~_20ol s i n • 2 1 5  = - s m  • + - - ~ - - T ~ [  s m  • + ~ 08 \ - ~ f  ~ 

I 0F22 
E 1 06 sinx2cos~2, 

q~2 { OF2, o~ ) sin 2• 1 + E2 OF'2 [ t OF.,~ ) = k - - ~ l  - -  2',j E~- aE 2 sin2• [-~1-- ~ - I -  2~~ c o s 2 •  

t OF22 
E i aft c~215 

( G oF~, or,,., ) 

( aFt2 E 2 OF~I ) 

( t  OFx2 t OF")(sin•215215 
'Z 2 a6 + E 1 06 

~,2 = _ oo., _ ~j~ + ( E~ OF~' aF2' ) E2 aE 1 +-gU[ 1 + e~t s i n 2 x t +  

( OF,2 E~ aF2t ) 
+ \-a~-, + E 7 oE--7 + dl= .~in" • + 

+ E 2 a6 + E, a~ 

o., ) . o . .  ) 
E2 aE1 + ~ a  + ~~ sin2•  t + \ a E  2 -1- E1 OE z +o~ s in2•  

( l  OF,, 1 a F 2 , ) ( c o s 2 •  _ c o s 2 •  
+ E~ a8 + Et a8 

The Jaumann derivatives of the stress tensor [i] are here extracted in the left side. The 
coefficients B i. in system (1.8) are instantaneous elastic moduli of the material in this 
state. For Isotropic material their expression for the stress tensor in the principal an 
axes is obtained in [2, 3]. It should be emphasized that (i.1) and (1.8) and (1.9) are the 
identical relationships describing the finite specimen behavior under arbitrary deformation 

(1.9) 
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in different terminologies. Additional hypotheses were not introduced in the derivation 
of (1.8) and (1.9) and only new natural definitions and data of the macrotest were utilized. 
Such a more complex mode of writing (i.i) was required in connection with the fact that it 
allows generalization to the inhomogeneous state. 

Let there be an arbitrary stress distribution in a deformable body. Let us isolate 
a sufficiently small element within whose limits the velocity distribution can be considered 
linear while the stress state is homogeneous. All the constructions examined above are valid 
(gradient models are excluded). The state parameters E i, ~i ~ ~i, d, oij �9 and oij here 
become functions of the coordinates xl, x 2. Since the derivative with respect to the time, 
denoted by a dot, is referred to a fixed material element, then the total derivative $/3t + 
viS/Sxi, where 8/8t is the partial derivative for fixed coordinates x i as usual, corresponds 
to it in the inhomogeneous case. Together with the equilibrium equations 

0 0~11 0 0~i2 0 0~i~ ~ 0 ~  2 
ox 1 0 t  "4: oz~ ot = 0 ,  Ox--~ o---7-+o~---~ 0---7 . = 0  ( 1 . t 0 )  

t h e  r e l a t i o n s h i p s  ( 1 . 8 )  and ( 1 . 9 )  form a c l o s e d  sys t em in  t h e f i v e u n k n o w n s :  8 ~ i l / S t  , 8 e i ~ / S t  , 
8 o ~ z / O t ,  v l ,  and v~. I t s  s o l u t i o n  y i e l d s  t h e  change o f  s t a t e  o f  t he  d e f o r m a b l e  body w i t h i n  
one small loading step. The parameters oij, oij ~ zi, and E i characterizing the state al- 
ready achieved are knowns in the system. A~ter the problem has been solved, their new values 
are converted by means of the formulas (1.4), (1.5), (1.7), and (1.8). Therefore, the system 
(1.8)-(1.10) and formulas (1.4), (1.5), and (1.7) permit solution of the problem of arbitrary 
deformations of an anisotropic elastic body. 

Furthermore, (i.i) should satisfy constraints of general nature whose formulation per- 
mits reduction of the class of necessary experiments in their determination. The first con- 
straint of this nature is energetic: the work should equal zero on any closed deformation 
path. Let us examine such paths in the neighborhood of a certain homogeneous state (oij = 
oi~c) when a change in the elastic coefficients Bkm (k, m = I, 2, 3) in (1.8) can be neglec- 
ted. For 0 -< t <_ 1 let the velocity distribution be 

vi = xi = h~u( t )x  ~, h ~ - . t .  

The requirement that the contour xi(0) = xi(1) be closed yields 

(i.il) 

OPij (1) + h ~ 9 i~q~ jd t  = 0 (h 2) cDij (t) = 9ij (~)d~ . ( 1 . 1 2 )  
0 0 

Considering (1.8) and (i. II) as ordinary differential equations, we expand their solu- 
tion in a small parameter h and compose an expression for the work of the external forces 

I 

W=~ijvi,jVdt [V = V0(l + h~ll + h~2~ ) + O(h 2) is the volume]. The conditions that this 
0 

work e~ual zero for any functions ~ij(t) satisfying (1.12) are of the form Bi2 + oll= 
B2 i + o22, B~I + oi2 = Bis/2, Bs2 + o12 = B2a/2 (because of the arbitrariness of the initial 
stresses oiic the superscript c can be omitted). Taking account of the last equalities, 
relations (1.8) can be rewritten as 

GII -- ~12 Yi,2 -- -~ l;2,i -c (XilU2,2 ----- 

: KliVl,1 q- K12v2,2 -k KI~ (yi,2 + U2,1), 

0r22 -~ (~12 EU1,2 ---2-U2,1 ~- G22t'l,i : K12Vl, i @ K22v2,2 @ K2a (Vl,2 @ v2,1), 

(~12 -~ ---~ ~ Vl,2 - -  "~ /22,1 - - ' ' - ~  ~ -  U1,2 - -  ~- V2,1 ~- - - ~  (//1,1 -~ V2,2) : 

= K13~'1,1 @ K23U2,2 @ /s (U1,2 @ [72,1) 

(1.13) 

(KII ... K33 are known combinations of Bkm and oij). 

When going over from (1.8) to (1.13), components of the symmetric tensor that is the 
objective derivative of the stress were extracted to the left side in a natural way. The 
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%0 
Fig. 2 

potentiality condition is simply the symmetry condition of a fourth-rank tensor that con- 
nects it to the strain rates. A measure of the stress change for which the matrix of instan- 
taneous elastic moduli is symmetric is also introduced in [2]. The components of this velo- 
city differ from the left side of (1.13) by the components (i/2)(OikVk, j + ajkVk,i). 

The second constraint of general nature refers to the case when the medium is isotropic. 
Let us isolate a "new" specimen in the specimen in the initial state, a square of smaller 
dimensions defined by the parameter 0 g g ~ I (Fig. 2). We consider the shaded triangles 
as part of the loading unit. Then the equilibrium and deformation homogeneity conditions 
permit finding the force applied to the "new" specimen and all its geometric characteristics, 
too. Because of the isotropy they should be related by the same dependences (I.i) for any 
0 ~ g ~ i. This yields four functional equations in the four functions Fij. Their general 
solution is found successfully by using the following circumstance. 

For any fixed deformation of the original specimen achieved at the time t = t o the free 
parameter ~ can be selected such that the appropriate "new" specimen would become rectangu- 
lar at t = t o . The converse is also true: if we limit ourselves just to a loading class 
without shear for the original specimen, then by using arbitrary g it is always possible 
to find such a "new" specimen that would experience any previously assigned deformation. 
This means that to obtain the complete characteristics of an isotropic material it is suffi- 
cient to perform experiments of just biaxial tension. It is afterwards necessary to express 
the functions Fij (.,., 6) in terms of Fij (.,., O) and substitute into (1.9). This road is 
fraught with awkward calculations. The same final result is obtained if we were to go from 
the relationships describing the biaxial loading test over to equations of the type (1.13) 
directly. For the test interpretation it is more convenient to take k i = E02/~i 2 = Ei -2 
as arguments 

O~l : ~ ( k l ,  ks) , o$2 = G(~2, kl) , 0~2 = ~ 1 ~  O. ( 1 . 1 4 )  

L e t  t h e  O x l ' x  2 '  c o o r d i n a t e  s y s t e m  whose  a x e s  a r e  d i r e c t e d  a l o n g  t h e  s i d e s  o f  t h e  s p e c i m e n  
be r o t a t e d  t h r o u g h  an  a n g l e  a r e l a t i v e  t o  t h e  l a b o r a t o r y  c o o r d i n a t e s .  Then  ( 1 . 5 )  w i l l  y i e l d  

~1  = G(kl, ks) cos2 = + G(ks, kl) sin 2 =, ~ s  = G(kl, ks) sin ~ = + ( 1 . 1 5 )  

q- G(ks, kl) c~ a ,  ~ s  = [G(kl, ks) - -  G (ks, kl)] sin = cos a .  

The Problem of describing complex recharging occurs here. If the specimen is stretched along 
the Ox l' and Ox 2' axes to the values kl(t 0) and k2(t 0) at the time t and it experiences an 
arbitrary homogeneous recharging characterized by small displacements vidt, then it will 
cease to be rectangular in the general case. Since the state of the specimen under considera- 
tion emerges beyond the biaxial loading test framework, it is impossible to use the relation- 
ships (1.14) at the next time t o + dt directly. This difficulty is overcome successfully 
by using the "new" specimen concept. As mentioned above, this latter can always be selected 
such that it is deformed into a rectangle at the time t o + dt. Then its orientation and 
size determine the values ~(t ~ + dt), k1(t ~ + dr), kH(t ~ + dt). Therefore, as functions 
of time, = and k i describe not the evolution of the state ol some element consisting of identi- 
cal material particles but the deformation process as a whole, 

kl = - -2~1[U1 ,1  COS2 = + (U1,2 + US, l) sin =cos = + vs.s sin s a ] ,  ( 1 . 1 6 )  

ks = --2ks[vl , i  sin s = - -  (vl,~ ~ vs, 1 ) sin a cos = + vs,2 cos ~ a ] ,  

-- ) ~ 1 - - ~ 2  kl+k2[ vl']-v2"~ 2 v1'2 -~ V2'l 2 ] = v~l v12 + , - - - - -~-  s i n2=  c o s 2 a .  
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If (1.15) is differentiated, then by using (1.16) it can be reduced to the form (1.13). 
following values of the elastic moduli are utilized here: 

�9 29 0 sin 220~, 
sm -~  __ Q2 cos 2o~ + Q3, KI~ + If ,  

sin 22a 4- 
K22 = Q1 sin2 2~ Q~ cos 2 a  I- Q~, K~3 = - -  Q~ ~ - Q4, 

2 

sin 2~ K23 - -  [Q1 cos 2~ 2u Q2] sin 2~z 
Kla  = [ - -  Q,  cos 2o: + Q21 2 ' 2 ' 

The 

(1.17) 

where 

~, + ko [G (k. k2)-- G(k.,, l~)] -- k/G (k~, k~) +k/G #% k~) 

0G (ki,  ]*'2) a~ (]r ~1) (23 = - -  ]~1 0G (kl, ~'2) OG (];2' ]~1) 
ok ' (1.z8) 

i k ~ + k  2 G ( k  2,k~), H G(]q ,  k2) 2k~ _ i k~-v~.~ G ( k  1 , k 2 )  ' ~-  2 k 1 - k  2 ok 2 2 k l - - k  ~ ~ ~ - -  

The condition for existence of a potential that has the form H(k I, k 2) = H(k2, k l) in this 
case is used here. 

Relationships (1.17) show that the moduli K13, K23 x 0 in the general case, i.e., in 
the presence of initial stresses the medium will behave as an anisotropic medium with re- 
spect to small recharging although it is isotropic "in the large." This fact can be treated 
as an anisotropy induced by stresses existing in the medium [3, 4] in contrast to the "in- 
herent" anisotropy described by (1.8) and (1.9). 

Therefore, for an isotropic elastic body, the closed system of equation in 3o11/8t, 
3o22/3t, 8o12/8t, vl, and v 2 has the form (I.i0), (1.13), (1.17), and (i.18). Conversion 
of the parameters oij, k i, and a in the coefficients of this system in the next step is re- 
alized by means of (i.13) and (1.16). 

2. Biaxial tension tests on rubber under plane stress state conditions were composed 
to determine the function G. A specimen of size 120 • 120 mm and 0.4 mm thickness was ar- 
ranged horizontally and stretched by seven clamps along each side. To assure that the clamps 
were parallel, there was the possibility of displacing them along the specimen sides varying 
in length. The deformations were measured at the middle of the specimen at an 80-mm base. 
The forces P~ and P2 were transmitted through modules from the suspended loads. The maximal 
deformation (E I - i) was 60% in the test. The rubber disclosed the property of creep. Con- 
sequently, not less than a 2-min hold was made before each measurement. This was sufficient 
for the creep deformation to be reduced to the 1-2% measurement error. 

The simplest kind of function G satisfying conditions for the existence of an elastic 
potential, isotropy, and incompressibility, a Mooney diagram, was taken as the basis for 
processing the results: 

(the material constants C I and C a were computed by least squares on the basis of 52 measure- 
ments: C l = 155 N/m, C 2 = 7.23 N/m). The rms residual of (2.1) here equals 1.34 N/m, which 
is at the level of the measurement error relative to the characteristic values of o I and o a. 

3. A series of numerical computations was performed to verify the theoretical construc- 
tions and the algorithm developed. A dimensionless problem on the deformation of an ellipti- 
cal domain with the semiaxes a = i/I, b = i, I < 1 (Fig. 3) was solved as a test. This 
problem was examined in detail in [5]. Both components of the velocity vector v(xl, x2) 
were given on the boundary. The vector is directed along the tangent to the boundary and 
was determined either by equality A: Iv • r I = 1 (Kepler inversion law) or by equality B: 
Ivl = 1 (r is the radius-vector drawn from the center of the ellipse). There are no initial 
stresses in the original state. After a specific time Tn (n = i, 2, ...) all the boundary 
points return to their original position. For problem A, T = 2~/i, while for B, T = L (L 
is the length of the boundary). The necessary condition for correctness of the model and 
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Fig. 3 

the algorithm is satisfaction of the following requirements: all the interior points should 
return to their original position after a time T in both problems; all the stress components 
should vanish after the time Tn/2; material points inStially on the axes should pass through 
the axes at the times t = Tn/4; the distribution of the stress, deformation, and their rates 
(in the sense of any definitions) should always be homogeneous in problem A [6]. Computa- 
tions were performed for domains with the semiaxes ~ = 2, 1.6, 1.2, and b = i. The finite 
element method with linear interpolation of the displacements was used. The problem (i.i0), 
(1.13), (1.17), (1.18) was solved at each loading step, after which the stresses and de- 
formations on the whole domain were converted. The stiffness matrix is obtained symmetric 
when using the governing equations in the form (1.13). Satisfaction of this property, as 
well as the equilibrium equations, was periodically checked numerically during solution of 
the problem. 

The system in displacements was solved by the method of sequential upper relaxation 
with an accelerating factor 1.4-1.6. Taken as initial approximation was the solution in 
the previous step, here a 10 -5 accuracy in the uniform metric was usually reached after 30- 
50 iterations. 

To increase the accuracy of the approximation, a predictor-corrector scheme was used. 
When solving problem B, the loading step At = T/400 and domain discretization into 310 stress 
elements for t = T/2 was zero-set with 0.6% accuracy relative to the maximal that appeared 
during the whole loading time. Successive stages in the deformation of the material curve, 
that coincided with the ellipse minor semiaxis at the initial time, are shown in Fig. 3. 
Experiments were formulated according to the method in [5, 6] for rubber and showed satis- 
factory agreement with analysis. 

The distribution of the stress, the deformation and their rates is obtained homogene- 
ously in problem A. For t = T/2 the stresses returned to zero values with up to 0.7% accuracy. 

Problem B was solved for comparison within the framework of equations that do not take 
account of the induced material anisotropy: B~3 = B23 = B3I = B32 = 0, B~ = B2z = % + 2p, 
BI2 = B21 = %, and B33 = 2~ (% and p are Lame constants). The stiffness matrix is obtained 
nonsymmetrically here. All the interior points return to the original positions, but the stresses 
do not vanish for t = T/2 and are 10-15% of the maximal values. 

Two fundamental approaches are used at this time to solve problems with large deforma- 
tions. The first starts from finite relationships between the selected measures of the 
stresses and deformations and operates with substantially nonlinear equations [7-9]. Lar 
grange coordinates are ordinarily utilized here since this permits solution of the problem 
for a domain with known boundaries. 

The whole process of body deformation from the initial into the final configuration 
is considered in the second (incremental) approach. It is a sequence of small recharging 
steps within the limits of each of which the response of the medium to the external action 
can be considered linear while the domain occupied by the body is unchanged. This permits 
reduction of the original nonlinear problem to a sequence of linear problems with known boun- 
daries. Moreover, such a method of description is natural even from the mechanical point 
of view since the loading process is really always realized gradually and the deformable 
body passes through the whole sequence of intermediate states between the initial and the 
final. This approach is possible both in Lagrange [10-13] and Euler [14] coordinates. This 
paper is executed by using Euler coordinates within the framework of the second approach. 

Thus, the sequential description of an experiment on homogeneous loading results in 
a natural closed model that predicts the appearance of induced anisotropy, which is neces- 
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sary for correctly taking account of complex loading effects. The model and algorit~hm sa- 
tisfy the formulated test requirements and agree with test and permit solution of the prob- 
lem on large deformations of an elastic anisotropic body. 
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